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Abstract
Natural Language Inference (NLI) has been
one of the recent focuses in the NLP commu-
nity. NLI tasks generally require machines to
possess a strong reasoning ability and a broad
understanding of words, and even the world.
This project aims at approaching three cate-
gories of tasks in NLI: question answering, tex-
tual entailment, and plausibility inference. We
conclude that with the input of extra knowl-
edge from other datasets or knowledge graphs,
the performances of baseline pre-trained mod-
els are improved to different extent. By con-
ducting trials on various models and compar-
ing between them, we learnt and summarized
the strategies of building Natural Natural Infer-
ence models that worked best for us.

1 Introduction

1.1 Natural Language Inference
The process of reasoning and inference is crucial
for both human and artificial intelligence when ad-
dressing natural language sources. Specifically,
Natural language inference (NLI) can be formu-
lated as a family of text classification problems,
where the fundamental task is to classify the rela-
tionship between sentences, including entailment,
contradiction and more (Chen et al., 2020). Such
tasks particularly challenge machines’ capability
of capturing underlying information in text and
external knowledge about language and the world.

Although reasoning beyond explicitly expressed
is trivial to human, the task remains challenging
for machines, thus compiled knowledge resources
are introduced in support. Storks et al. (2020) sum-
marized three types of knowledge resources: lin-
guistic knowledge, common knowledge, and com-
monsense knowledge, corresponding to the linguis-
tic knowledge, explicit facts and implicit common
senses.

∗Equal contribution.

1.2 Language Model Pre-training

The Transformer proposed by (Vaswani et al.,
2017) was a major breakthrough in translation qual-
ity, and it provided an alternative model architec-
ture for a wide spectrum of NLP tasks. It has been
so influential that the majority of the state-of-the-
art approaches for NLI depend on later variations
of pre-trained linguistic models (Zhou et al., 2019).

Depending on their high-level strategies, these
models fall into one of the following cate-
gories: autoregressive models, autoencoding mod-
els, sequence-to-sequence models, multimodal
models and retrieval-based models (Babić et al.,
2020). Particularly, autoencoding models are pre-
trained by corrupting the original sentence and
then reconstructing it, including BERT (Devlin
et al., 2019), ALBERT (Lan et al., 2020) and
RoBERTa (Liu et al., 2019). Meanwhile, autore-
gressive models are pre-trained by guessing the
next token given previous ones, including GPT
(Radford et al., 2018), GPT2 (Radford et al., 2019)
and XLNet (Yang et al., 2020).

Pre-trained language models can be fine-tuned
for text classification tasks. The language mod-
els are trained in a general corpus, with different
data distribution from the target domain. Sun et al.
(2020) summarized 3 approaches for further pre-
training:
• Within-task pre-training: pre-train the model

on the training data of a target task;
• In-domain pre-training: pre-train the model on

data of similar distribution;
• Cross-domain pre-training: pre-train the

model on data of possibly different domains to a
target task.

1.3 Commonsense Knowledge

Beyond pre-training, the community has a contin-
uous effort in incorporating external knowledge,



Benchmark CommonsenseQA ConvEnt EAT
Task Type Question Answering Textual Entailment Plausible Inference

Training size 9741 442 887
Validation size 1221 78 157

Table 1: Benchmarks for Natural Language Inference Experiments. For ConvEnt and EAT dataset, the training
and validation sets are split randomly with a ratio of 85%:15%.

especially common and commonsense knowledge.
Such knowledge are produced in various ways, in-
cluding generating from human-annotated evidence
like WikiNLI (Chen et al., 2020), mining from pre-
trained models (Davison et al., 2019) and extracting
evidence from a knowledge sources.

Knowledge sources of different natural struc-
tures are available, including graph-structured
knowledge like ConceptNet (Speer et al., 2018)
and unstructured/semi-structured knowledge like
Wikipedia plain texts (Ryu et al., 2014). Figure
1 shows an example from the CommonsenseQA
dataset (Talmor et al., 2019) which requires multi-
ple external knowledge to make the correct predic-
tion. In this example, evidence from ConceptNet
helps to rule out choices (B,D,E) and Wikipedia
text evidence helps rule out choices (A,B,D). With
the knowledge input from both knowledge sources,
machines can derive the correct answer C.
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Abstract

Commonsense question answering aims to answer questions
which require background knowledge that is not explicitly
expressed in the question. The key challenge is how to ob-
tain evidence from external knowledge and make predictions
based on the evidence. Recent studies either learn to generate
evidence from human-annotated evidence which is expensive
to collect, or extract evidence from either structured or un-
structured knowledge bases which fails to take advantages of
both sources simultaneously. In this work, we propose to au-
tomatically extract evidence from heterogeneous knowledge
sources, and answer questions based on the extracted evi-
dence. Specifically, we extract evidence from both structured
knowledge base (i.e. ConceptNet) and Wikipedia plain texts.
We construct graphs for both sources to obtain the relational
structures of evidence. Based on these graphs, we propose a
graph-based approach consisting of a graph-based contextual
word representation learning module and a graph-based infer-
ence module. The first module utilizes graph structural infor-
mation to re-define the distance between words for learning
better contextual word representations. The second module
adopts graph convolutional network to encode neighbor infor-
mation into the representations of nodes, and aggregates evi-
dence with graph attention mechanism for predicting the final
answer. Experimental results on CommonsenseQA dataset il-
lustrate that our graph-based approach over both knowledge
sources brings improvement over strong baselines. Our ap-
proach achieves the state-of-the-art accuracy (75.3%) on the
CommonsenseQA dataset.

Introduction
Reasoning is an important and challenging task in artificial
intelligence and natural language processing, which is “the
process of drawing conclusions from the principles and evi-
dence” (Wason and Johnson-Laird 1972). The “evidence” is
the fuel and the “principle” is the machine that operates on
the fuel to make predictions. The majority of studies typi-
cally only take the current datapoint as the input, in which

∗Euqal Contributions. Work was done while this author was an
intern at Microsoft Research Asia.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Question: What do people typically do while playing guitar?

A. cry  B. hear sounds  C. singing ()  D. anthritis E. making music 

people

eyes

cry

sound

singing

playing guitar

HasPrerequisite

RelatedTo

Evidence from ConceptNet

Evidence from Wikipedia

What can yearn, cry without tears?

What is to cry and to weep?

She also performed them, playing guitar and singing.

Jakszyk led the band, playing guitar and singing.

A. cry

C. singing

Making music and playing guitar are his hobbies.

He began making music when he started guitar lessons.
E. making music

Figure 1: An example from the CommonsenseQA dataset
which requires multiple external knowledge to make the cor-
rect prediction. ConceptNet evidence helps pick up choices
(A, C) and Wikipedia evidence helps pick up choices (C,
E). Combining both evidence will derive the right answer
C. Words in blue are the concepts in the question. Words in
green are the relations from ConceptNet. Words in red are
the choices picked up by evidence.

case the important “evidence” of the datapoint from back-
ground knowledge is ignored.

In this work, we study commonsense question answer-
ing, a challenging task which requires machines to collect
background knowledge and reason over the knowledge to
answer questions. For example, an influential dataset Com-
monsenseQA (Talmor et al. 2019) is built in a way that
the answer choices share the same relation with the con-
cept in the question while annotators are asked to use their
background knowledge to create questions so that only one
choice is the correct answer. Figure 1 shows an example
which requires multiple external knowledge sources to make
the correct predictions. The structured evidence from Con-
cepNet can help pick up the choices (A, C), while evidence
from Wikipedia can help pick up the choices (C, E). Com-
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Figure 1: A question answering example from the Com-
monsenseQA dataset. Making the correct answer re-
quires external knowledge from both ConceptNet and
Wikipedia. Words in blue are the concepts in the ques-
tion. Words in green are the relations from ConceptNet.
Words in red are the choices picked up by evidence (Lv
et al., 2020).

Particularly, graph-structured knowledge is
proved to be powerful in many application, because
of its ability to represent words as individual nodes
and relationships between words as edges. To han-

dle graph information, recent years have seen a
series of work using graph neural networks to in-
troduce knowledge graphs for NLI tasks. Inspired
by Lv et al. (2020) and Song et al. (2020), we pro-
pose to use graph convolutional networks to extract
knowledge graphs collected evidence from hetero-
geneous external knowledge sources, and develop
a graph-based reasoning framework to provide ex-
tracted knowledge to NLI models.

2 Tasks and Benchmarks

To study the capability of graph attention based
reasoning framework to address general NLI tasks,
we perform experiments on three different types of
NLI problems: Question Answering, Textual En-
tailment and Plausible Inference. One benchmark
dataset is chosen for each task as is listed in Ta-
ble 1, each requiring the model to perform causal
reasoning upon comprehensive commonsense.

CommonsenseQA CommonsenseQA is a ques-
tion answering benchmark (Talmor et al., 2019). It
presents a natural language questionQ ofm tokens
{q1, q2, · · · , qm} and 5 choices {a1, a2, · · · , a5} la-
beled with {A,B, · · · , E}.

ConvEnt ConvEnt (Conversation Entailment) is
a textual entailment task studied by Zhang and
Chai, 2010). It features a conversation Q com-
posed of n sequences of natural language texts
{t1, t2, · · · , tn} as the premise and an interpreta-
tion sentence h as the hypothesis. The task is to
identify if the hypothesis h is entailed in the given
dialogue.

EAT EAT (Everyday Actions in Text) is a plau-
sible inference benchmark from the SLED group.
The dataset consists of a sequence of events rep-
resented by natural language texts {t1, t2, · · · , t5}.
The model aims to identify whether the story is
plausible and if not, specify at which event the
story becomes implausible.



3 Computational Models

In this report, we will be comparing methods that
utilize knowledge sources in different ways. To
make comparisons, we classify the models into 3
groups, as is shown below and in Table 2.
• Group 1: within-task tuned models;
• Group 2: in/cross-domain tuned models;
• Group 3: graph based models.

BenchmMarks Group 1 Group 2 Group 3
CommonsenseQA Y N Y

ConvEnt Y Y N
EAT Y Y N

Table 2: All of the 3 benchmarks are experimented on
Group 1 models for baseline comparison. Since Com-
monsenseQA is a large dataset while ConvEnt and EAT
are small, there is no need to introduce data of simi-
lar domains for CommonsenseQA, while graph models
cannot generate representations on very small datasets.
Therefore, only ConvEnt and EAT benchmarks are ex-
perimented on Group 2 models, and the Group 3 model
is only applied to CommonsenseQA.

3.1 Within-task Tuned Models
The within-task tuned models are pre-trained lan-
guage models that are directly fine-tuned on the
target training data and make predictions directly
on the validation dataset without external knowl-
edge sources involved. We chose 2 autoencoding
models: BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) and 1 autoregressive model: XL-
Net (Yang et al., 2020) for experiments for all of
the 3 benchmarks. These models were expected
to provide a comparison baseline for task perfor-
mances when no knowledge outside of the target
dataset is involved.

Type Models
Autoencoding BERT, RoBERTa
Autoregressive XLNet

Table 3: A table of within-task pre-trained models for
experiments.

3.2 In/Cross-domain Tuned Models
The ConvEnt and EAT benchmarks are too small in
terms of training set size, and the training loss stops
updating quickly after a few epochs. Therefore, it
can be expected before experiment that within-task
tuning would perform poorly on these benchmarks.

Recall from Section 1.2, in-domain pre-trained
models are tuned on data of similar distribution,

and cross-domain pre-trained models are tuned
on data of possibly different domains to a target
task. The general procedure is to first fine-tune
our model on these knowledge source datasets, and
then tune the model on the target benchmark. To
set up in/cross-domain fine-tuning, we chose 3 ex-
tra datasets for knowledge sources in each of the
benchmark types.
• Question Answering: PIQA, created by Bisk

et al. (2019).
• Textual Entailment: MultiNLI, created by

Williams et al. (2018)
• Plausibility Inference: SWAG, created by

Zellers et al. (2018)
We expect that datasets of the same benchmark

types should share a more similar domain distribu-
tion, while datasets of different benchmark types
should share a different domain distribution, as is
summarized in Table 4.

Benchmarks In-domain Cross-domain
ConvEnt MultiNLI PIQA, SWAG

EAT SWAG PIQA, MultiNLI

Table 4: For ConvEnt, models runed on MultiNLI
are in-domain, while models tuned on SWAG and
PIQA are cross-domain. Similarly for EAT, models
runed on SWAG are in-domain, while models tuned on
MultiNLI and PIQA are cross-domain.

3.3 Graph Based Models
The community has started to use graph neural
networks (GNNs) to introduce external knowledge
to address many NLI tasks. Graph-based networks
are models that extract and learning knowledge
representations from graph-structured knowledge
sources and make inferences upon these external
evidences. In the report, we used the graph-based
reasoning model by Lv et al. (2020) to experiment
on CommonsenseQA dataset.

The KGAnet proposed by Song et al. (2020)
address the Textual Entailment problem and per-
form experiment on SNLI (Bowman et al., 2015).
The module applies a cross-attention mechanism
in extracting prediction, and is proved to outper-
form traditional Graph Attention Network (GAT)
(Veličković et al., 2018). However, the inference
module of this model is not graph-based, so we
applied the graph-based reasoning model for exper-
iments.

The graph-based reasoning model proposed by
Lv et al. (2020) is an adaptation of XLNet (Yang



et al., 2020). One major contribution of the work is
that they were the first to propose a model that lever-
ages evidence from multiple knowledge sources. In
the experiment, ConceptNet and Wikipedia Plain
Text are preprocessed into knowledge graphs.

The graph-based reasoning module, as is rep-
resented in Figure 2, consists of a graph-based
contextual representation learning module and a
graph-based inference module.

a relation weight. For each question and choice, we first
identify their entities in the given ConceptNet graph. Then
we search for the paths (less than 3 hops) from question en-
tities to choice entities and merge the covered triples into
a graph where nodes are triples and edges are the relation
between triples. If two triples si, sj contain the same en-
tity, we will add an edge from the previous triple si to the
next triple sj . In order to obtain contextual word representa-
tions for ConceptNet nodes, we transfer the triple into a nat-
ural language sequence according to the relation template in
ConceptNet. An example is shown in Figure 3. We denote
the graph as Concept-Graph.

people

can do 

singing

people

has 

eyes

eyes is 

related to 

cry

singing

requires 

sound

sound is 

related to 

playing 

guitar

cry is a 

kind of 

sound

Figure 3: An example of constructed Concept-Graph from
the ConceptNet evidence. The underlined words are the con-
cepts in ConceptNet.

Knowledge Extraction from Wikipedia
We extract 107M sentences from Wikipedia1 by Spacy2

and adopt Elastic Search tools3 to index the Wikipedia sen-
tences. We first remove stopwords in the given question and
choices then concatenate the words as queries to search from
the Elastic Search engine. The engine ranks the matching
scores between queries and all the Wikipedia sentences. We
select top K sentences as the Wikipedia evidence. Here we
adopt K=10 in experiments.

To discover the structure information in Wikipedia evi-
dence, we construct a graph for Wikipedia evidence. We uti-
lize Semantic Role Labeling (SRL) to extract triples (subjec-
tive, predicate, objective) in one sentence. Both arguments
and predicates are the nodes in the graph. We add two edges
<subjective, predicate> and <predicate, objective> in the
graph. In order to enhance the connectivity of the graph. We
remove stopwords and add an edge from node a to node b
according to the following enhanced rules: (1) Node a is
contained in node b and the number of words in a is more
than 3; (2) Node a and node b only have one different word
and the numbers of words in a and b are both more than 3.
An example is shown in Figure 4. We denote the graph as
Wiki-Graph.

Graph-Based Reasoning
In this section, we present the model architecture of graph-
based reasoning over the extracted evidence, shown in Fig-
ure 5. Our graph-based model consists of two modules: a

1Wikipedia version enwiki-20190301
2https://spacy.io/
3https://www.elastic.co/

he

began

started

making 

music

guitar 

lessons

making 

music and 

playing 

guitar.

are

his 

hobbies

Figure 4: An example of constructed Wiki-Graph from
the Wikipedia evidence “He began making music when he
started guitar lessons” and “Making music and playing gui-
tar are his hobbies”. The dotted line denotes the added edge
according to our enhanced rules (1).

graph-based contextual representation learning module and
a graph-based inference module. The first module learns bet-
ter contextual word representations by using graph informa-
tion to re-define the distance between words. The second
module gets node representations via Graph Convolutional
Network (Kipf and Welling 2016) by using neighbor infor-
mation and aggregates graph representations to make final
predictions.

Question + Choice

Graph-Based Contextual Representation Learning Module

Word Representation

Graph Convolutional Network

Input Representation <cls>

Node Representation Graph Attention

Output

Evidence <sep>

Graph-Based Inference Module

Figure 5: An overview of our proposed graph-based reason-
ing model.

Graph-Based Contextual Representation Learning
Module
It is well accepted that pre-trained models have a strong text
understanding ability and have achieved state-of-the-art re-
sults on a variety of natural language processing tasks. We
use XLNet (Yang et al. 2019) as the backbone here, which is
a successful pre-trained model with the advantage of captur-
ing long-distance dependency. A simple way to get the rep-
resentation of each word is to concatenate all the evidence as
a single sequence and feed the raw input into XLNet. How-
ever, this would assign a long distance for the words men-
tioned in different evidence sentences, even though they are
semantically related. Therefore, we use the graph structure
to re-define the relative position between evidence words. In

Figure 2: An overview of our proposed graph-based
reasoning model (Lv et al., 2020)

The graph-based contextual representation learn-
ing module is built upon XLNet (Yang et al., 2020).
The module assigns a closer distance of those re-
lated works in different evidence sentences by us-
ing graph information. Algorithmically, Topology
Sort Algorithm is applied to re-order the input
evidence according to the constructed knowledge
graphs.

The graph-based inference module tries to ag-
gregate evidence at the graph-level for predic-
tions. Specifically, a Graph Convolutional Network
(GCN) (Kipf and Welling, 2016) is used to retrieve
the node representation, and a graph attention layer
is applied for prediction.

4 Experimental Results

This section delivers our experimental results for
each benchmarks1. The majority of the codes
were developed in the HuggingFace framework
(Wolf et al., 2020).

4.1 CommonsenseQA

The experiment results are listed in Table 5.

1The source codes are available at https://github.
com/Mars-tin/commonsense-for-inference

Group Model Val Acc (%)
Random Random 20.0

Group 1

BERT-base 56.6
BERT-large 61.7
XLNet-base 46.9
XLNet-large 62.7

RoBERTa-base 67.2
RoBERTa-large 77.4

Group 3
Graph Based (our) 73.0

Graph Based (official) 79.3

Table 5: The validation accuracy obtained for each
model tested. All the values are the best outcome af-
ter hyperparamter tuning, including learning rate, de-
cay rate, etc.

Data Preprocessing The CommonsenseQA task
is formulated as a multiple choice problem, a subset
of text classification problem.

The dataset is in the form of a natural lan-
guage question Q of m words {q1, q2, · · · , qm}
and 5 choices {a1, a2, · · · , a5} labeled with
{A,B, · · · , E}. For each question, five inputs were
formulated by concatenating the question and each
answer. We also signified the relation of question
and answer in the input by adding a “Q” before
the question and an “A” before the answer so that
the input would be formulated as {Q: q1 q2 · · · qm
A: ai }. The formal input was tokenized and com-
posed of special tokens, such as separation tokens
between the question and the answer and padding
tokens following the original sentence.

Best Performing Model The best performing
model among all experiments was the fine-tuning
RoBERTa-large model (Liu et al., 2019), imple-
mented in fairseq framework (Ott et al., 2019).
The model ended up with a validation accuracy of
77.4%.

The model was tested for several sets of hyper-
parameters, the best result came from the model
trained in 10 epochs, using an AdamW opti-
mizer (Loshchilov and Hutter, 2019) with β =
(0.9, 0.98), ε = 10−6 and learning rate of 10−5.
The dropout rate is set to 0.1.

5 Conversation Entailment

The experiment results are listed in Table 6.

Data Preprocessing The ConvEnt task is formu-
lated as a binary sequence classification problem, a
subset of text classification problem.

https://github.com/Mars-tin/commonsense-for-inference
https://github.com/Mars-tin/commonsense-for-inference


Group Model Val Acc (%)
Random Random 50.0

Group 1

BERT-base 54.8
BERT-large 57.6
XLNet-base 54.8
XLNet-large 54.8

RoBERTa-base 54.8
RoBERTa-large 60.9

Group 2

On PIQA 63.1
On SWAG 65.0

On MultiNLI 66.3

Table 6: The validation accuracy obtained for each
model tested. All the values are the best outcome af-
ter hyperparamter tuning, including learning rate, de-
cay rate, etc. All the baseline pretrained models for
group 2 are RoBERTa-large. Many models ended up
with 54.8% because all the predictions are 1, and the
model did not learn from the data due to the size.

The ConvEnt dataset consists of a conversa-
tion Q composed of n sequences of natural lan-
guage texts s1 = {t1,1, t1,2, · · · , t1,m1}, · · ·, sn =
{tn,1, tn,2, · · · , tn,mn} as the premise and an inter-
pretation sentence h as the hypothesis.

To prevent the potential issue in tokenization (for
example, both “speakerA” and “speakerB” were
tokenized to the same token id), we substituted
every appearance of “speakerA” with “Tom” and
every appearance of “speakerB” with “Bob”, which
could be well tokenized to different token id’s. We
also substituted pronouns such as “I” and “you” to
their corresponding subjects to make the reference
relation clearer.

To formulate the input, every part of the conver-
sation, as well the hypothesis, was concatenated
together as {s1, · · · , s2, h}. The formal input was
tokenized and composed of special tokens, such as
separation tokens between the premise and the hy-
pothesis and padding tokens following the original
sentence.

Best Performing Model The best performing
model among all experiments was the fine-tuning
RoBERTa-large model (Liu et al., 2019) on
MultiNLI dataset Williams et al. (2018), imple-
mented in HuggingFace framework (Wolf et al.,
2020). The model ended up with a validation accu-
racy of 66.3%.

The model was tested for several sets of hyper-
parameters, the best result came from the model
trained in 1 epoch (since the dataset is small), us-

ing an AdamW optimizer (Loshchilov and Hutter,
2019) with β = (0.9, 0.98), ε = 10−6 and learning
rate of 1× 10−6.

5.1 EAT

The experiment results are listed in Table 7.

Plausibility Breakpoint
Group Model Accuracy F1-score

(%) (%)
Random Random 50.0 20.0

Group 1

BERT-base 54.1 25.1
BERT-large 56.1 42.6
XLNet-base 50.3 22.3
XLNet-large 50.3 22.3

RoBERTa-base 63.4 56.6
RoBERTa-large 73.1 64.5

Group 2

On PIQA 64.6 55.2
On SWAG 75.4 67.6

On MultiNLI 77.5 65.3

Table 7: The validation plausibility accuracy and break-
point F1-score obtained for each model tested. All the
values are the best outcome after hyperparamter tuning,
including learning rate, decay rate, etc. All the baseline
pretrained models for group 2 are RoBERTa-large.

Data Preprocessing The Everyday Actions in
Text task is formulated as a multiple choice of a
list of binary sequence classification, which can be
interpreted as a combination of text classification
problems.

The EAT dataset consists of a sequence of
n events represented by natural language texts
{t1, · · · , tn}. To examine whether the whole story
is plausible, we sequentially composed the input
by concatenating consecutive events. For example,
a sequence of 4 events {t1, t2, t3, t4} made up 3 in-
puts: {t1, t2}, {t1, t2, t3}, and {t1, t2, t3, t4}. This
method of splitting the whole story conveniently
helped the model focus on the relation between
events and helped us determine where the break-
point might occur.

The formal input was tokenized and composed
of special tokens, such as separation tokens before
the final event in each input and padding tokens
following the original sentence.

Best Performing Model The best performing
model among all experiments was the fine-tuning
RoBERTa-large model (Liu et al., 2019), imple-
mented in HuggingFace framework (Wolf et al.,



2020). The best plausibility accuracy was ob-
tained when the model was first tuned on MultiNLI
Williams et al. (2018), while the best breakpoint
F1-score was obtained when the model was first
tuned on SWAG Zellers et al. (2018). The best ac-
curacy was 77.5% and the best breakpoint F1-score
was 67.6%.

The model was tested for several sets of hyper-
parameters, the best result came from the model
trained in 1 epoch (again, the dataset is small), us-
ing an AdamW optimizer (Loshchilov and Hutter,
2019) with β = (0.9, 0.98), ε = 10−6 and learning
rate of 2× 10−6.

6 Discussion

6.1 Feedback
With the experiments, we arrived at some insights
in handling NLI tasks.

Insight 1 Autoencoding models outperform au-
toregressive ones.

The first important insight is that, in general, one
would expect autoencoding models like BERT and
RoBERTa to do better in text classification tasks
than autoregression models like XLNet.

According to our experiment results, the perfor-
mance of XLNet is usually less satisfying. This is
especially the case in ConvEnt and EAT task. In
these tasks, the prediction of XLNet based models
on binary classification tasks are blown up and the
outputs will be all 0 or all 1, leading to the near-
random performance. While for the autoencoding
models, with proper hyperparameters, the output
can be reasonable, though not satisfying.

We believe that this nature can be explained by
the origin of these models. the autoencoding mod-
els are trained by corrupting one sentence then
reconstructing it, thus is naturally suitable for sen-
tence classification or token classification tasks.
Meanwhile, autoregressive models are developed in
traditional natural language generation tasks, thus
are more suitable for text generation tasks.

Insight 2 Graph based models help to improve
theoretically but is computationally expensive for
practical applications.

Our re-implementation of the graph based model
ended up with an accuracy of 73.0%, while the
official reported accuracy of the model is 79.3%.

Looking back on the experiment settings of the
original paper, it can be found that their experi-
ment was done on 2 P100 GPUs with 50 GB RAM,

which is beyond the computational power of Colab.
Also, their result was obtained after 40000 epochs
of training, which is not affordable for us, as our
result was obtained after 500 epochs. Therefore,
although graph based models can help to improve
the performance of NLI tasks theoretically, in prac-
tical perspective, they are less competitive to the
user-friendly transformers. In fact, our best result
on RoBERTa-large is 77.4%, which is almost equal
to the official accuracy.

One of the possible research topic could be de-
veloping pre-trained GNN models and graph em-
beddings for natural language tasks, and this would
definitely be powerful for industry.

Insight 3 In-domain tuning are more powerful
than cross-domain tuning.

For smaller datasets like ConvEnt and Common-
senseQA, the model does not learn from the dataset
and the predictions ended up with all-0 or all-1. In
such cases, it is important to apply in-domain or
cross-domain training, with knowledge input from
other datasets.

According to our experiment results, the best
accuracy on ConvEnt was obtained by pre-tuning
the RoBERTa-large model on the MultiNLI dataset,
which is as well a textual entailment benchmark.
Also, the best breakpoint F1-score for EAT is ob-
tained by training the RoBERTa-large model first
on 25000 samples from SWAG dataset (the full
dataset contains over 70000 samples, but we can-
not afford the time, to train on such a large dataset),
and SWAG is a plausible inference benchmark.

In general, in-domain tuning are more powerful
than cross-domain tuning. We believe that the rea-
son behind is that datasets of the same benchmark
types share a closer distribution, thus the knowl-
edge learned in one dataset transform well to the
other one.

6.2 Error Analysis

To analyze the cause of error, we inspected a few
wrong predicting instances from the best perform-
ing model and tried to figure out potential explana-
tions for the mis-predictions.

Table 8, 9, 10 samples a few typical wrong pre-
dictions for CommonsenseQA, ConvEnt, and EAT.

CommonsenseQA We think the problem lies in
lack of knowledge or insufficient extraction. The
questions that are wrongly predicted generally re-
quires a very strong reasoning and understanding



Question Choices Answer Prediction
James was looking for a good place A. midwest B. countryside
to buy farmland. C. estate D. farming areas A E
Where might he look? E. Illinois

A. cry B. hear sounds
What do people typically do while playing guitar? C. singing D. arthritis C E

E. making music
A. rest area B. school

Where could you find a toilet that only friends can use? C. stadium D. apartment D B
E. hopital

Table 8: Mis-predicted examples in CommonsenseQA benchmark

Conversation Hypothesis Answer Prediction
SpeakerA: I’m, just wrote my resume up because told we
might be facing layoff over at Digital and they’ve never SpeakerA thinks there Entailment Non-
had, well, they’ve had layoffs recently, but when we got will be layoffs at Digital Entailment
hired here, no, no, never any layoffs, never, never,
SpeakerB: Well, I like animals, but we don’t have any yet.
We have a nine month old with another on the way SpeakerB thinks that her Entailment Non-
SpeakerA: Uh-huh. SpeakerB: and we thought, kids are too small for animals Entailment
well maybe when they’re a little bit bigger

Table 9: Mis-predicted examples in Conversation Entailment benchmark

Story Plausibility (breakpoint) Prediction (breakpoint)
Ann stepped into the garage.
Ann turned on the washing machine.
Ann put the detergent in the washing machine. Implausible (4) Plausible(-1)
Ann put the shorts in the washing machine.
Ann walked out of the bathroom.
Tom took cake from fridge.
Tom peeled the orange with knife.
Tom throws away his ice cream. Implausible (3) Implausible(1)
Tom ate ice cream with spoon.
Tom put cake into oven.

Table 10: Mis-predicted examples in EAT benchmark

on the interrelationships of words, which, is what
the graph based model is good at. In fact, the
second mis-prediction example is used for demon-
stration in the graph based model paper.

Conversation Entailment We think the wrong
predictions originate from complex or implicit
structures in the conversation as well as vaguely
referencing pronouns. For example, the conversa-
tion in the second row of Table 9 is mis-predicted
possibly because the pronoun “they” is not well
understood by the model.

EAT The wrong predictions might come from
dissimilar distribution of knowledge dataset. For
example, the model cannot to identify breakpoint 4
in the first row of Table 10, which demands identi-
fying the long-distance dependency between first
sentence and the fifth sentence. Yet, the knowledge
dataset, MultiNLI, is originally designed for rea-
soning over two short sentences. Also, our model
is prone to sharp topic shift between sentences ac-

cording to the second example.

6.3 Conclusion

In this project, we can come to the conclusion
that, with external knowledge input, the perfor-
mances of baseline pre-trained models are im-
proved to different extent.
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